Entries by DOE-MBI Staff

Upcoming Minisymposium: Frontier Problems and Technologies in Bioenergy and Biodesign

On September 14, 2015, the UCLA-DOE Institute of Genomics and Proteomics will host a 1-day minisymposium on Frontier Problems and Technologies in Bioenergy and Biodesign. The symposium aims to expose the UCLA campus and nearby research communities to important new energy-related research and technology developments. A number of leading investigators will discuss their latest work. […]

Todd Yeates has received The DeLano Award for Computational Biosciences

Todd Yeates has received The DeLano Award for Computational Biosciences by the American Society for Biochemistry and Molecular Biology (ASBMB). The Award is given in the field of computational biology for “the most accessible and innovative development or application of computer technology to enhance research in the life sciences at the molecular level.” The prize […]

International collaboration co-led by Prof. David Eisenberg elucidates the mechanism of safe storage and action of the potent human toxin MBP-1

Eosinophils are white blood cells that are part of the body’s innate immune defense against pathogens. Once an infection occurs, eosinophils are activated and migrate to the infected tissue where they contribute to kill the invading microorganisms (bacteria, viruses or helminths) by secreting a number of toxic proteins, including the Major Basic Protein (MBP-1). While […]

Crowd Phasing

We have a new CrowdPhasing game that we would like everyone to try to play. It was begun briefly as part of a conference demonstration last month, and it was a promising start, but now we need to play the game in earnest to see how far it can progress. This one is distinctly different […]

Crowdsourcing the phase problem

Successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing.